
Integration, Fundamental Theorem of Calculus

December 2, 2016

Problems

Problem 1. Find the following.

1.

∫ 2π

0

cos(x)dx

Solution:

∫ 2π

0

cos(x)dx = sin(x) |2π0 = 0

2. The unsigned area bounded by cos(x) between 0 and 2π.

Solution: Since cosx ≤ 0 for x ∈ [π/2, 3π/2], the unsigned area equals to∫ π/2

0

cos(x)dx+

∫ 3π/2

π/2

− cos(x)dx+

∫ 2π

3π/2

cos(x)dx = sin(π/2)−sin(0)−(sin(3π/2)−sin(π/2))+sin(2π)−sin(3π/2) = 4.

3.

∫
1

x2
sin

(
1

x

)
dx

Solution: Make substitution u = 1
x . Then du = − 1

x2 dx, and so∫
1

x2
sin

(
1

x

)
dx =

∫
− sin(u)du = cosu+ C = cos

(
1

x

)
+ C

4.

∫ 1

−1
t3(1 + t4)3dt

Solution: since t3(1 + t4)3 is an odd function, and the interval [−1, 1] is symmetric with respect to
t = 0, the integral equals to 0. A different approach would be to use the substitution u = t4.

5.

∫ π/4

0

tanxdx

Solution: Let u = cos(x). Then du = − sin(x)dx, u changes from cos(0) = 1 to cos(π/4) = 1/
√

2,
and ∫ π/4

0

tanxdx = −
∫ 1/

√
2

1

du

u
=

∫ 1

1/
√
2

du

u
= ln(u) |1

1/
√
2
= ln

√
2

1



Problem 2. Below is the graph of a function f .

Let g(x) =

∫ x

0

f(t)dt. Find g(0), g′(0) and g′(2).

Solution: g(0) =

∫ 0

0

f(t)dt = 0. By the Fundamental theorem of Calculus, g′(0) = f(0) = 4 and

g′(2) = f(2) = 0.

For 0 < x < 2 the function g(x) is

1. increasing and concave up;

2. increasing and concave down;

3. decreasing and concave up;

4. decreasing and concave down.

Solution: Since g′(x) = f(x) is positive on (0, 2), the function g(x) is increasing. Since g′(x) = f(x) is
decreasing on (0, 2), the function g(x) is concave down.

Problem 3. Find the area of the propeller-shaped region enclosed by the curves x− y1/3 = 0 and
x− y1/5 = 0.

Solution: The two graphs intersect at (−1,−1), (0, 0) and (1, 1). The sketch is as follows (the area of
interest is green):

Thus, the area of the propeller is given by∫ 0

−1
y1/3 − y1/5dy +

∫ 1

0

y1/5 − y1/3dy =
3

4
(0− 1)− 5

6
(0− 1) +

5

6
(1− 0)− 3

4
(1− 0) =

5

3
− 3

2
=

1

6

2



Problem 4. Let f(x) =

∫ x3

x2

(t2 − t)2dt. Find f ′(x).

Solution: We can re-write f(x) as f(x) =

∫ x3

0

(t2 − t)2dt−
∫ x2

0

(t2 − t)2dt. Then by the Fundamental

Theorem of Calculus combined with the chain rule we get

f ′(x) = (x6 − x3)2 · 3x2 − (x4 − x2)2 · 2x

Problem 5. A rocket lifts o the surface of Earth with a constant acceleration of 20 m/sec2. How fast will
the rocket be going 1 minute later?

Solution: Acceleration is given by the derivative of the velocity, a(t) = dv(t)
dt . We are given

a(t) = dv(t)
dt = 20 and so v(t) = 20t+ C for some constant C. Since at the time t = 0 the rocket is not

moving, v(0) = 0, i.e. C = 0. This gives v(t) = 20t. In one minute, the speed will be v(60) = 1200 m/sec2.

Problem 6. Compute the integral

∫ √
1− x2dx. (Hint: u = arcsinx means x = sinu.)

Use it to compute

∫ 1

−1

√
1− x2dx. Does the result match what you would expect from the usual geometric

considerations?

Solution: Making the substitution u = arcsinx, or x = sinu, we get
√

1− x2 = cosu and dx = cosu du.
Thus,∫ √

1− x2dx =

∫
cos2 u du =

∫
1 + cos 2u

2
du =

1

2
u+

1

4
sin 2u+ C =

1

2
arcsinx+

1

4
sin (2 arcsinx) + C

One last step is to simplify sin (2 arcsinx). We have

sin (2 arcsinx) = 2 sin(arcsinx) cos(arcsinx) = 2x
√

1− x2

Using the Fundamental Theorem of Calculus,

∫ 1

−1

√
1− x2dx = π

2 . Since the graph of
√

1− x2 over [−1, 1]

is just a semi-circle of radius 1, its area is π
2 which is what we’ve got.

Problem 7. Using definite integrals, find the limit of the following sum:

lim
n→∞

(
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n

)

(Hint:
1

n+ i
=

1

n
· 1

1 + i
n

)

Solution: We need to understand lim
n→∞

n∑
i=1

1
n+i = lim

n→∞

n∑
i=1

1
n ·

1
1+ i

n

.

Consider the function f(x) = 1
1+x on the interval [0, 1]. It is continuous on this interval, and therefore

integrable. The sum we are interested in,
n∑
i=1

1
n ·

1
1+ i

n

is just the lower sum for f(x) on [0, 1]. Since f is

integrable,

lim
n→∞

n∑
i=1

1

n
· 1

1 + i
n

=

∫ 1

0

dx

x+ 1
= ln(1 + x) |10= ln(2)

So the answer is ln(2).

Problem 8. Using Riemann sums, find the formula for computing the volume of a cone of height h and
radius r. You can use the formula for the volume of a cylinder.
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Solution: Split [0, h] into n intervals of equal length h
n . The radius ri of the i-th thin cylinder can be

found using similar triangles: ri
r = h−ih/n

h = 1− i/n, and so ri = r(1− i/n). Therefore, the volume of the

i-th thin cylinder is equal to h
n · πr

2
(
1− i

n

)2
and the overall volume of all the thin cylinders is given by

n∑
i=1

h
n · πr

2
(
1− i

n

)2
. We need to compute the limit of this sum as n→∞.

This sum is a Riemann sum for the function f(x) = πhr2(1− x)2 on the interval [0, 1]. Therefore, the
desired limit is equal to ∫ 1

0

πhr2(1− x)2dx = πhr2 ·
∫ 1

0

(1− x)2dx =
1

3
πhr2

This is the same as the usual formula we know and love.
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